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LElTER TO THE EDITOR 

Randomly stirred fluids, mode coupling theories and the 
turbulent Prandtl number 

Jayanta K Bhattacharjeet 
Department of Physics, University of Manchester, Manchester M13 9PL, UK 

Received 25 February 1988 

Abstract. The model of a randomly stirred fluid introduced by De Dominicis and Martin 
is used to study the convection of a passive scalar, namely temperature. Mode coupling 
theory of dynamic critical phenomena is used to calculate the turbulent Prandtl number, 
which is a universal amplitude ratio. The result agrees with that obtained from the dynamic 
renormalisation group. 

A model for studying the long-wavelength properties of a randomly stirred fiuid was 
put forward by Forster et a1 (1977) and generalised by De Dominicis and Martin 
(1979). These authors calculated the effect of the non-linear terms in the Navier-Stokes 
equation on the bare viscosity and showed that for a certain class of forcing, the 
long-wavelength viscosity diverged and for a particular forcing (maximally random in 
a certain sense) the effective viscosity was such that the Kolmogorov spectrum for the 
energy density of a turbulent fluid was obtained. Recently Yakhot and Orszag (1986) 
have calculated the associated amplitude ratio (viscosity coefficient to the strength of 
the forcing) and using some existing results (e.g. Leslie 1972) as an extra ingredient 
evaluated the Kolmogorov constant and found it in remarkable agreement with experi- 
ment. They then applied the dynamical renormalisation group methods of Ma and 
Mazenko (1975) to the coupled problem of randomly forced fluid and temperature 
diffusion and found a turbulent Prandtl number (one of the phenomenological mile- 
stones akin to the Kolmogorov law) quite close to the accepted experimental value. 
In this letter, we produce a derivation of the turbulent Prandtl number using the Kubo 
formula for diffusion and mode coupling theories of critical dynamics (Kawasaki 1970, 
Ferrell 1970) and show that it is in exact agreement with the value obtained from the 
dynamic renormalisation group calculation of Yakhot and Orszag. This, in itself, is 
not surprising. However, the mode coupling calculation presented here makes the 
associated approximation transparent, and also shows how the direct-interaction 
approximation integrals (Leslie 1972) need to be handled to reproduce the results of 
the renormalisation group. It thus becomes clear that one is talking about a long- 
wavelength property and the near perfect agreement with the experimental result should 
be viewed with a healthy suspicion. 

The model proposed by De Dominicis and Martin and extended to allow for 
thermal diffusion is 

dU V P  
at  P 
-+ (U * V)u = --+ .a U +f 

v * u = o  (2) 

t Permanent address: Department of Physics, Indian Institute of Technology, Kanpur 208016, India. 
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dT+ ( U -  V) T = DV'T. ( 3 )  
at 

In the above U and T are the velocity and temperature fields, Y and D are the 
kinematic viscosity and thermal diffusivity respectively and P and p are the pressure 
and density (constant because of incompressibility). The pressure can be eliminated 
from (1) by using (2). The random stirring force is specified by its correlation; in 
momentum and frequency space this correlation is 

( J ;  ( k ,  w ) f ;  (k ' ,  U ' ) )  = 2 Do( 2 7r)""P, ( k )  k4-D ( 1 + k2L2)-y/26 ( k  + k' )  6 ( w + w ') (4) 

( 5 )  Pjj( k )  = 6, - kik,/ k2  
L is a stirring length, and d is the dimensionality of space. 

The perturbation theory in diagrammatic terms for (1) was established by Wyld 
(1961). The dressed single loop diagram for the response function leads to the effective 
zero-frequency viscosity or self-energy Z( k )  given by 

where 

k = p + q  

and 

with 

(7) 

and the summation over i, j ,  in, r, s in (8) runs from 1 to d. The summation in (8) 
can be performed to yield 

Performing the frequency convolution in (7) leads to 

where we have assumed that the relevant region of momentum space is such that pL >> 1 
(distance scales much smaller than L )  and have absorbed the factor of Ly in Do to 
define E0L-?. We now note that a self-consistent solution of (11) is obtained for 

Z ( k )  = Tok" (12) 
where 

x = - y / 3  

and 

with all the primed momenta scaled by k. 
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The Kolmogorov case is obtained for y = 4 (for a different discussion see Ronis 
(1977)). 

We now point out that the integral in (14) would give a singularity in ri for y 3 3, 
the singularity coming from the region of momentum space where p<< k and this is 
the difficulty that has plagued the DIA. 

However, the integral of (14) has an infrared divergence for y 3 0, the divergence 
coming from the region of momentum space p >> k. To obtain the long-wavelength 
behaviour of the viscosity, however, we need to extract the infrared divergence and 
(14) can be written as 

ri= fiO[I,/Y+ I I + Y I 2 + 0 ( Y 2 ) 1  ( 1 5 )  

where the integral Io is the integral in the limit of p >> k and the remaining numbers 
Il , 12, etc, are obtained by a systematic expansion of the integral about y = 0. We 
claim that this procedure establishes a systematic expansion for the quantity ri/ fi, in 
powers of y when all loops are taken into account. The two-loop graph has the structure 
(contribution to r,) D ; V / r i ,  where V is the two-loop integral which from a power 
counting argument is seen to have an infrared divergence at y = 0. Thus V has the 
expansion Vo/y+ V ,+O(y )  and noting that Do/ri  is O ( l / y )  from (15), we conclude 
that the leading contribution of the two-loop graph is at O( 1) .  The leading-order term 
from three-loop graphs can easily be seen to contribute at O ( y )  and thus the loop 
expansion is an expansion in y. Thus, to lowest order in y the amplitude ratio ri/fio 
is given by 

GI fio = Io/Y (16) 
where explicit evaluation yields 

c d  being the surface area of a &dimensional sphere. 
We now turn to (3). The diffusion coefficient or the dressed single-loop self-energy 

can be obtained from a perturbation theory for the temperature response function or 
the Kubo formulae for transport coefficients. The result, well known in critical dynamics 
of single component fluids (e.g. Kawasaki 1970), is 

d -4fy 

ddp sin2 6 1 
( 2 d d  P d - 2 + y  ( p 2 Z ( p ) + q 2 D ( q H '  

We see immediately that if Z ( p )  scales as p-?13, D ( q )  must scale as q-y'3 (extended 
dynamic scaling; Ferrell et a1 (1968)). Hence, with 

D( k )  = rl k-y'3 (19) 
we have 

Once again, we notice that the integral has an infrared divergence for y = 0 and can 
be expanded as in (15). A loop expansion can be carried out for rl exactly as for To 
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and, to the leading order in y, we find 

- 3 CD d - 1  r r 2  I+- = D , - - -  '( r'a) y ( 2 5 ~ ) ~  d * 

From (16), (17) and (21), 

2(d+2) '  

The turbulent Prandtl number ut is given by 

For d = 3, (22) yields 

ut = 0.72 (24) 

in accordance with the result obtained from the dynamic renormalisation group. The 
experimental value for ut lies between 0.7 and 0.9 and thus (24) is a remarkably good 
estimate. We note in passing that (17) ,  used together with the result obtained from 
the energy balance (Leslie 1972), gives a Kolmogorov constant in exact accordance 
with Yakhot and Orszag (1986). 

As expected, the conventional mode coupling treatment of the non-linear terms in 
the Navier-Stokes equation and heat diffusion equation yields exponents and ampli- 
tudes in agreement with the renormalisation group. The long-wavelength nature of 
the approximation is made explicit in the discussion following (14). This corresponds 
to the fact that the controlling fixed point in the dynamic renormalisation group is an 
infrared fixed point. One has to keep this fact in mind while discussing the relevance 
of the result to the actual situation in turbulence. The Kolmogorov law and the 
universal turbulent Prandtl number are valid in the inertial range-a range of wavevec- 
tors which lies intermediate between the range where energy is fed in ( - L - ' )  and 
where it is dissipated ( - v ~ " / E ' ' ~ ,  E being the rate of dissipation of energy). The 
results in this letter hold for wavenumbers which are small, but larger than L-'; how 
far these wavenumbers can extend into the inertial range is a problem worth a closer 
look. 

Several conversations with A J McKane are gratefully acknowledged. This work has 
been supported by an SERC grant. 
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